Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Molecules ; 27(9)2022 Apr 29.
Article in English | MEDLINE | ID: covidwho-1847380

ABSTRACT

A small fenbufen library comprising 18 compounds was prepared via Suzuki Miyara coupling. The five-step preparations deliver 9-17% biphenyl compounds in total yield. These fenbufen analogs exert insignificant activity against the IL-1 release as well as inhibiting cyclooxygenase 2 considerably. Both the para-amino and para-hydroxy mono substituents display the most substantial COX-2 inhibition, particularly the latter one showing a comparable activity as celecoxib. The most COX-2 selective and bioactive disubstituted compound encompasses one electron-withdrawing methyl and one electron-donating fluoro groups in one arene. COX-2 is selective but not COX-2 to bioactive compounds that contain both two electron-withdrawing groups; disubstituted analogs with both resonance-formable electron-donating dihydroxy groups display high COX-2 activity but inferior COX-2 selectivity. In silico simulation and modeling for three COX-2 active-p-fluoro, p-hydroxy and p-amino-fenbufens show a preferable docking to COX-2 than COX-1. The most stabilization by the p-hydroxy fenbufen with COX-2 predicted by theoretical simulation is consistent with its prominent COX-2 inhibition resulting from experiments.


Subject(s)
Cyclooxygenase 2 Inhibitors , Drug Design , Anti-Inflammatory Agents/pharmacology , Biological Assay , Cyclooxygenase 1 , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Molecular Docking Simulation , Molecular Structure , Phenylbutyrates , Structure-Activity Relationship
2.
Bioorg Chem ; 117: 105466, 2021 12.
Article in English | MEDLINE | ID: covidwho-1499653

ABSTRACT

Series of piperidone-salicylate conjugates were synthesized through the reaction of 3E,5E-bis(arylidene)-4-piperidones with the appropriate acid chloride of acetylsalicylate in the presence of triethylamine. All the synthesized conjugates reveal antiproliferative properties against A431 (squamous skin) cancer cell line with potency higher than that of 5-fluorouracil. Many of the synthesized agents also exhibit promising antiproliferative properties against HCT116 (colon) cancer cell line, of which 5o and 5c are the most effective with 12.9, 9.8 folds potency compared with Sunitinib. Promising activity is also shown against MCF7 (breast) cancer cell line with 1.19, 1.12 folds relative to 5-fluorouracil. PI-flow cytometry of compound 5c supports the arrest of cell cycle at G1-phase. However, compound 5o and Sunitinib arrest the cell cycle at S-phase. The synthesized conjugates can be considered as multi-targeted tyrosine kinase inhibitors due to the promising properties against VEGFR-2 and EGFR in MCF7 and HCT116. CDOCKER studies support the EGFR inhibitory properties. Compounds 5p and 5i possessing thienylidene heterocycle are anti-SARS-CoV-2 with high therapeutic indices. Many of the synthesized agents show enhanced COX-1/2 properties than aspirin with better selectivity index towards COX-2 relative to COX-1. The possible applicability of the potent candidates discovered as antitumor and anti-SARS-CoV-2 is supported by the safe profile against normal (non-cancer, RPE1 and VERO-E6) cells.


Subject(s)
Antineoplastic Agents/chemistry , Antiviral Agents/chemistry , Aspirin/chemistry , Curcumin/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , COVID-19/pathology , COVID-19/virology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cyclooxygenase 1/chemistry , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/chemistry , Cyclooxygenase 2/metabolism , Drug Design , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Protein Binding , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism
3.
Curr Med Sci ; 41(2): 297-305, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1193158

ABSTRACT

Since the outbreak of the novel corona virus disease 2019 (COVID-19) at the end of 2019, specific antiviral drugs have been lacking. A Chinese patent medicine Toujiequwen granules has been promoted in the treatment of COVID-19. The present study was designed to reveal the molecular mechanism of Toujiequwen granules against COVID-19. A network pharmacological method was applied to screen the main active ingredients of Toujiequwen granules. Network analysis of 149 active ingredients and 330 drug targets showed the most active ingredient interacting with many drug targets is quercetin. Drug targets most affected by the active ingredients were PTGS2, PTGS1, and DPP4. Drug target disease enrichment analysis showed drug targets were significantly enriched in cardiovascular diseases and digestive tract diseases. An "active ingredient-target-disease" network showed that 57 active ingredients from Toujiequwen granules interacted with 15 key targets of COVID-19. There were 53 ingredients that could act on DPP4, suggesting that DPP4 may become a potential new key target for the treatment of COVID-19. GO analysis results showed that key targets were mainly enriched in the cellular response to lipopolysaccharide, cytokine activity and other functions. KEGG analysis showed they were mainly concentrated in viral protein interaction with cytokine and cytokine receptors and endocrine resistance pathway. The evidence suggests that Toujiequwen granules might play an effective role by improving the symptoms of underlying diseases in patients with COVID-19 and multi-target interventions against multiple signaling pathways related to the pathogenesis of COVID-19.


Subject(s)
COVID-19 Drug Treatment , Drugs, Chinese Herbal/pharmacology , Medicine, Chinese Traditional , SARS-CoV-2/genetics , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/genetics , COVID-19/virology , Cyclooxygenase 1/genetics , Cyclooxygenase 2/genetics , Dipeptidyl Peptidase 4/genetics , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/classification , Gene Expression Regulation, Viral/drug effects , Humans , Quercetin/genetics , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Signal Transduction/drug effects
4.
Sci Rep ; 10(1): 10187, 2020 06 23.
Article in English | MEDLINE | ID: covidwho-613136

ABSTRACT

Microsomal prostaglandin E2 synthase-1 (mPGES-1) is known as an ideal target for next generation of anti-inflammatory drugs without the side effects of currently available anti-inflammatory drugs. However, there has been no clinically promising mPGES-1 inhibitor identified through traditional drug discovery and development route. Here we report a new approach, called DREAM-in-CDM (Drug Repurposing Effort Applying Integrated Modeling-in vitro/vivo-Clinical Data Mining), to identify an FDA-approved drug suitable for use as an effective analgesic targeting mPGES-1. The DREAM-in-CDM approach consists of three steps: computational screening of FDA-approved drugs; in vitro and/or in vivo assays; and clinical data mining. By using the DREAM-in-CDM approach, lapatinib has been identified as a promising mPGES-1 inhibitor which may have significant anti-inflammatory effects to relieve various forms of pain and possibly treat various inflammation conditions involved in other inflammation-related diseases such as the lung inflammation caused by the newly identified COVID-19. We anticipate that the DREAM-in-CDM approach will be used to repurpose FDA-approved drugs for various new therapeutic indications associated with new targets.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Coronavirus Infections/drug therapy , Drug Repositioning , Lapatinib/pharmacology , Pneumonia, Viral/drug therapy , Prostaglandin-E Synthases/antagonists & inhibitors , Betacoronavirus , COVID-19 , Computational Chemistry/methods , Coronavirus Infections/pathology , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Cyclooxygenase Inhibitors/pharmacology , Humans , Inflammation/drug therapy , Molecular Dynamics Simulation , Pandemics , Pneumonia, Viral/pathology , Prostaglandin-E Synthases/metabolism , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL